
International Journal of Research in Advent Technology, Vol.6, No.5, May 2018

E-ISSN: 2321-9637

Available online at www.ijrat.org

757

CouchDB: Reliable Repository for Big Data generated by IOT

S. Raghavendra Kumar
1
, Dr.B. Lalitha

2

 Student
1
, Assistant Professor

2

CSE Dept
1,2

, JNTUACEA
1,2

, Anantapur, A.P, India
1,2

 Email: rksakali.it29@gmail.com
1
, lalitha_balla@yahoo.co.in

2

Abstract: Internet of Things (IoT) has a capability to develop dynamic systems and real-time applications by the growth of

RFID and wireless, mobile, and sensor devices. A spacious of industrial IoT applications have been builded and utilized in

present days. Storage is an important research direction of the Internet of Things. Enormous and heterogeneous data of the IoT

brings the storage as huge challenges and more complicate in terms of terabyte to petabyte (volume), speed in growth

(velocity),hybrid data and un-structured data and structured data (variety) in nature. This is known as „Big Data‟. When data

and number of requests increases, structure database cannot handle huge data and requests efficiently. One of the best

consequence to overcome these obstacles is to transfer datacenters on NoSQL document oriented databases. In document

oriented databases, the CouchDB , provides a REST API, and offers a high set of features targeted to IoT applications.

Furthermore, we develop optimized schemes for uploading documents which are specifically customized to resource-

constrained IoT devices. We estimate our proposed schemes both analytically and with experiments.

Keywords —Big Data; CouchDB; IoT; JSON; MongoDB ; NOSQL.

1. INTRODUCTION

IoT is the system which connects things with help of the

Internet [1] through varieties of information perception

devices, in order that all the standard physical objects which

can be independently addressed are capable to exchange

information with each other, and eventually achieve the

goal of intelligent identification, locating, routing,

supervising . Data is one of the important characteristic of

the IoT. In Internet of Things, data is from different types

of sensors and characterize billions of objects. IoT data

have attributes such as Multi-source and Heterogeneity,

Temporal-spatial, Interoperability and Multi-dimensional.

 IoT applications need to access a database, from which

they can conveniently obtain the data of interest. To this

end, application support leverages a standard application

programming interface (API) for web services, such as the

REpresentational State Transfer (REST). The storage

accredits complex data analysis – e.g., for knowledge

mining and semantic analysis – that ease from data being

persevered at some location. However, the storage of IoT

data also raises major challenges. First, flexibility is needed

in supporting diverse data. This requires the definition of a

data model which can efficiently describe not only scalar

values, but also heterogeneous and multimedia content [2].

Second, the storage infrastructure has to be scalable, as it

needs to support a huge number of both IoT devices and

end-users. Hence, the corresponding framework can benefit

from being distributed, inorder to support load-balancing

and clustering for multi-tier query processing.

 In this paper, we proposed a NoSQL based document-

oriented repository model to overcome the problems in IoT.

Here, we evolve a document-oriented approach and

illustrate how it supports heterogeneous data. In document-

oriented approach, the CouchDB [3] supports a RESTful

API and IoT applications which consists of heterogenous

data to store in its repository. They include replication for

load balancing, distributed query processing, and

notifications. Moreover, we plan optimized schemes for

uploading documents which are specifically customized to

resource-constrained IoT devices. We evaluate such

systems with experiment analysis. The achieved results are

shown efficiently in proposed work. The paper is organized

as follows. Section II-the related work. Section III- the

CouchDB implementation . Section IV -proposed work

based on both features and performance. Section V-

conclusion along with furthermore remarks.

2. RELATED WORK

2.1. IoT and Big Data: Large number of sensors and IoT

devices connects with each other from all over the world

and generates huge amount of heterogenous data. This is

known as Big Data [4]. Only Big Data technologies and

frameworks can handle such enormous data volumes that

are streaming varied types of information. The more the IoT

grows quantitatively, the more Big Data techniques will be

required. Within this space, organisations need to shift

focus to the rich data, which is easily accessible in real-

time. Data from sensors should be processed to find

patterns and insights in real-time to advance business goals.

Existing Big Data technologies can effectively harness the

incoming sensor data, store it and later analyse it efficiently

using artificial intelligence.

2.2. IOT and NoSQL: IoT devices have an important role

in generating heterogenous data. Just by using these devices

and connected sensors, it is possible to create complex

systems for data acquisition, with relatively low budget.

But, very small amount of these works illustrate the to

exchange and make use of information between NoSQL

with IoT and the impact of providing platforms that

combine these two technologies.Data gathered from sensors

and IoT devices should be stored properly and analyzed

International Journal of Research in Advent Technology, Vol.6, No.5, May 2018

E-ISSN: 2321-9637

Available online at www.ijrat.org

758

efficiently. Hence, NoSQL and Big Data are the better ideas

to this kind of challanges. With utilization of these solutions

based on the implementation of Big Data and analysis of

data flows generated by sensor networks, modern business

organizations can find new information that had not been

obvious earlier. Those information can be used for

improving the business. Their are four types of NoSQL

DBs [5], which are different from each other in data

storage. They are:

 Key-value DB: Data is stored with help of key-value

pairs. Value is retrieved with of the keys. Examples

are Redis, Dynomite, and Voldemort.

 Column-oriented DB: DB stores the data same as the

RDBMS tables.But only difference is in storing data

items. The data items are stored in columns instead of

the rows. Examples are Hbase, Cassandra, Hypertable.

 Document-oriented DB: Data are stored and organized

as a collection of documents. Documents are flexible;

each document can have a number of fields. Examples

are Apache CouchDB and MongoDB.

 Graph based DB: DB stores and retrieves the data

based on graph theory .This mainly focus on the inner

connectivity among dissimilar parts of data.Data

segments are shown with help of nodes and their

relationships and are defined by the edge of the

connection nodes. Example is Neo4j.

2.3. CouchDB: Storage services in IOT application

implemented using the NSQL database system called

CouchDB. Document-store databases like CouchDB allow

for freedom and flexibility in the structure of documents

where the entries can be of any size and structure which are

in the form of JSON documents. Queries to this database

are written as views using JavaScript and employ the map-

reduce algorithm which works in two steps: the map

function takes in the data or, in this case, the documents,

and filters the input according to a certain condition. The

reduce function, then takes the filtered output of the map

function and groups the data in accordance to a prescribed

criteria. The map-reduce functions improve the scalability

and speed of retrieving documents from the database.

 Finally, CouchDB also supports master-to-master

replication that allows all peer nodes to perform update and

insert operations [3]. Here in the system, if a user inserts a

new document in the remote database residing on their

device, the new entry is replicated to all other databases in

the system and becomes accessible by all other users upon

syncing.

Figure 1: CouchDB Architecture

3. COUCHDB IMPLEMENTATION

3.1. Data model : CouchDB stores JSON documents in the

form of binary data. The database files of CouchDB is

saved as .couch extension. CouchDB stores documents

directly inside of its databases. Each document has a unique

ID which can be assigned manually when inserting

documents, or automatically by CouchDB [3]. There is no

maximum number of key-value pairs for documents and no

upper limit size; the default max size is 4GB, but this can

be changed by editing CouchDB's configuration file.

Figure 2: CouchDB's data model showing database and

documents

3.2 . RESTful API: REST (Representational State

Transfer) is an architecture which describes how services

can be provided for machine-to-machine communications.

It supports developers to use HTTP methods to perform

operations such as Create, Read, Update, Delete(CRUD).

HTTP methods are mapped to CRUD follows as:

 POST - Create a resource

 GET - Read a resource

 POST - Update a resource

 DELETE - Delete a resource

In a RESTful architecture, resources like databases,

documents, attachments etc., get unique identifiers in the

form of URIs. Imagine you want to create a database called

agriculture on a local CouchDB setup .By the usage of

International Journal of Research in Advent Technology, Vol.6, No.5, May 2018

E-ISSN: 2321-9637

Available online at www.ijrat.org

759

CouchDB's standard port (5984) and the command-line

utility curl doing so would look like this:

curl -X PUT http://localhost:5984/agriculture

With the help of REST API, developer sends information in

the form of XML or JSON docments [7]. The above

request would be answered by CouchDB with a simple

JSON document, to inform the user of success:

{"ok"}:true

Similar requests using curl can be made to execute all of the

CRUD operations. CouchDB is a graphical Web interface,

and these contains libraries to programming languages, the

user always uses the raw HTTP requests.As web browsers

use HTTP, they can be able to read JSON documents from

CouchDB.

3.3. Scaling and replication: Replicating databases in

CouchDB is easy. All it takes to trigger replication is one

simple HTTP request that specifies the source database and

the target database: POST/replicate HTTP/1.1

{"source":"database","target":http://somewhere.com/db}

It is also possible to replicate from a remote server to the

local server by switching the values of the source and target

keys. CouchDB [3] supports two-way replication. To make

replication even easier, it can be performed from the

graphical Web interface Futon. Scaling out databases by

splitting them into an array of servers in a cluster is not as

much of a trivial matter as replication.

3.4. Querying: Relational database managament systems

typically use static data and dynamic queries; schemas are

fixed, and SQL queries are dynamic.In CouchDB data is

querying by the help of views. There are two kinds of

views: permanent views, which are static, and temporary

views, which can be provided ad-hoc. Views gives the

results of MapReduce functions [6] . Map functions are

written by the user, and iterate over all documents in the

database to check if the documents match the criteria

specified in the function by the user. If everything matches,

and a result is hence found, the document (or selected parts

of it) are emitted using the emit() function. A simple

example follows:

function(doc) {

if(doc.age && doc.age > 15 && doc.name)

emit(doc.name,doc.age);

}

In the above example, all documents that have the key age,

with a corresponding value that is over 15, are emitted. As

CouchDB unable to support static schemas, its important to

check that certain key-value pair could exists before trying

to use it. After a list of emitted documents has been

generated by the map function, a reduce function may be

used to further operate on the data.

3.5. Indexing: CouchDB views use MapReduce [6] to

index user‟s data. The MapReduce functions generate the

results of user‟s query, which can be obtained via

an HTTP request.When data performs added or removed

functions in the database, those indexes are updated

automatically. In addition, CouchDB [2] stores view results

throughout the B-tree data structure it uses for the index. If

CouchDB sees that user‟s query will include all of the

children of a given node, it will simply pull the “summary”

result from the parent node, preventing it from having to

visit each of the child nodes for their individual results.

This, and the fact that view results are computed when then

view is built, makes querying views very fast.

3.6. Attachments: As mentioned earlier, attachments

correspond to arbitrary data associated with a certain

content type.As a consequence, attachments are particularly

suitable to represent heterogeneous and multimedia data

which cannot be otherwise represented as numerical or

textual values. Examples of data suitable to be represented

as attachments include images, audio, video, and so on.

Attachments are main part of a CouchDB document.They

are identified by a name (e.g., a filename), and are

described through two fields: the content type in MIME

format [9] and the data itself in Base64 encoding [10] . For

instance, the following represents an attachment within a

document:

"_attachments":{

"hello.txt":{

"content_type": "text/plain",

"data": "SGVsbG8gd29ybGQh"

}

}

4. EVALUATION

In this section, we will evaluate our proposed storage

infrastructure. Specifically, we will provide first a

performance characterization of the document upload

process and performance based comparison between

couchdb and mongodb.

4.1. Document upload performance: As discussed in

Section III-6, attachments can be uploaded together with a

document by embedding them in the special attachments

field as Base64-encoded strings. As a consequence, this

approach has an overhead associated with the encoding

process itself, in terms of both processing time and resource

utilization. Furthermore, data encoded in Base64 format

result in an increased size with respect to the original ones,

thus increasing the bandwidth demand for transferring

documents. Clearly these aspects are critical in embedded

IoT devices.To this end, we consider an alternative process

for transferring documents with attachments. Specifically,

the document is uploaded first and then the attachments are

added to that document through separate HTTP requests.

This approach has the advantage of avoiding the Base64

encoding process [10] , since the attachments can be

provided as raw data in the corresponding HTTP request.

Transaction analysis: In this section, we will characterize

the overhead associated with transferring a document in

terms of the size of the corresponding HTTP requests. For

simplicity, in the following we limit our analysis to the

scenario wherein documents contain a single attachment.In

the case where the document also embeds the Base64-

International Journal of Research in Advent Technology, Vol.6, No.5, May 2018

E-ISSN: 2321-9637

Available online at www.ijrat.org

760

encoded attachments [10] , only a single HTTP request is

needed, and the related size is given by:

x1=h + m + aod + ̂= h + m + js + fn+ ̂ (1)

From equation (1), where h is the length of the HTTP

headers; m is the size of the (textual) document; aod is the

overhead of embedding the attachment in the document;

and ̂ is the size of the Base64-encoded attachment. The

overhead aod can be further expressed in terms of the JSON

[7] overhead js in the document and the filename length

fn.In contrast, the case where the attachments are uploaded

separately from the document requires two distinct HTTP

requests: one for the document and another one for the

attachment in raw format. Specifically, the size of the two

HTTP requests combined is given by:

x2 = h + m + h+ ̂ + ho = 2h + m + n + fn + aor (2)

From equation (2), where ho is the HTTP header overhead

when uploading the attachment in an individual request,

consisting in the filename length fn and in the overhead aor

for specifying a revision in the request. The strategy of two

separate requests incurs in less overhead than a single

request when x2 < x1. By knowing that the size of a Base64-

encoded block of size n is ̂ ⌈

⌉ and simple

calculations, obtains the breakeven point for:

n ≈ 3(h + aor − js) – 4 (3)

For practical values of the considered parameters, the

approach of two separate requests is more convenient than

the other one when n (from equation (3)) is above a few

hundred bytes. The analysis above only focuses on the size

of the requests and does not consider the overhead due to

additional factors, such as establishing TCP connections for

the HTTP requests.

4.2. Performance based comparison between couchdb and

mongodb: As IOT data have huge and it can be represented

better in document databases, it is needed to further probe

and find a better document database among the document

databases. MongoDB [8] is popular, but it is needed to

analyze the performances of both the databases to fix up

with one document database.The various parameters

analysed are

 No of Concurrent users vs Latency time

 Data Size vs Latency

 No of Cores vs Latency

1. Experimental Setup:

The Experimental setup was done on windows 7,

MongoDB 3.4 version and CouchDB 2.0 was used.

2. Experiments and the Results:

The performance deviations in Latency Time and

throughput was checked for the increasing the number of

clients, it was found MongoDB performed better when the

number of clients was increased. It is inferred from Figure 3

that MongoDB has a lesser Latency time than CouchDB as

the number of clients were increased.

Figure 3: Latency Time Vs No. of clients

The performance of MongoDB and Couch DB was

analysed for different Data sizes. It was found that

MongoDB performance for Larger files was better

compared with CouchDB. It is inferred from Figure 4 that

MongoDB has a lesser Latency time than CouchDB as the

data size increased.

Figure 4: Latency Time Vs Datasize

The analysis was done for varying number of Cores/CPU‟s

for throughput(Number of Images retrieved per minute)a

given Query, where Mongo DB‟s throughput was better

compared with CouchDB. It is inferred from Figure 5 the

throughput of MongoDB was much better than couchDB.

International Journal of Research in Advent Technology, Vol.6, No.5, May 2018

E-ISSN: 2321-9637

Available online at www.ijrat.org

761

Figure 5: Throughput Vs No. of Cores

5. CONCLUSION AND FUTURE WORK

The qualitative feature of CouchDB is analyzed in this

work. CouchDB is one of the NoSQL document oriented

database which enables to store IoT data.This supports

trivial and non-trivial queries. The CouchDB views with the

JavaScript query server are very slow to run, when it

contains number of non-trivial documents to process.

Here,CouchDB compared with MongoDB(other NoSQL

document oriented database) to analyze the performance.

 In Section-IV-C proves that MongoDB gives better

performance than the CouchDB. One of the

aspect,CouchDB supports master-master replication,if a

document updated in the remote database then

automatically updates in its replications which are present

in other databases. Furthermore ,compare the CouchDB

with other NoSQL Document oriented databases rather than

MongoDB such as Cloudant, OrientDB and ElasticSearch

etc., which gives best query performance in storing and

retrieving IoT data.

REFERENCES

 [1] L. Atzori, A. Iera, and G. Morabito, “The Internet of

Things: A survey,” Computer Networks, vol. 54, no.

15, pp. 2787–2805, 2010.

[2] Apache Software Foundation, “The Apache CouchDB

Project,” http://couchdb.apache.org, retrieve January

30, 2012.

[3] I. Akyildiz, T. Melodia, and K. Chowdhury, “A survey

on wireless multimedia sensor networks,” Computer

Networks, vol. 51, no. 4, pp. 921–960, 2007.

[4] Yong-Shin Kang, Il-Ha Park, Jongtae Rhee and Yong-

Han Lee, Member, IEEE,” MongoDB-based

Repository Design for IoT-generated RFID/Sensor

Big Data”, IEEE Sensors Journal-12398-2015.

[5] Vaish, G.: Getting Started with NoSQL, Packt

Publishing Ltd., Birmingham, UK, 2013.

[6] J. Dean and S. Ghemawat, “Mapreduce: simplified data

processing on large clusters,” Commun. ACM, vol. 51,

no. 1, pp. 107–113, Jan. 2008.

[7] D. Crockford, “The application/json Media Type for

JavaScript Object Notation (JSON),” Internet

Requests for Comments, Internet Engineering Task

Force (IETF), RFC 4627, July 1995.

 [8] Leavitt, N. (2010). Will NoSQL databases live up to

their promise?. Computer,43(2), 12-14.

[9] N. Freed and N. Borenstein, “Multipurpose InternetMail

Extensions (MIME) Part One: Format of Internet

Message Bodies,” Internet Requests for Comments,

Internet Engineering Task Force (IETF), RFC 2045,

November 1996.

[10] S. Josefsson, “The Base16, Base32, and Base64 Data

Encodings,” Internet Requests for Comments,Internet

Engineering Task Force (IETF), RFC 4648, October

2006.

